• română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • français 
    • română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • Ouvrir une session
Voir le document 
  •   Accueil de DSpace
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula I
  • 2003- 2017 (economie; informatică aplicată)
  • 2011_fascicula1_nr2
  • Voir le document
  •   Accueil de DSpace
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula I
  • 2003- 2017 (economie; informatică aplicată)
  • 2011_fascicula1_nr2
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Association and Sequence Mining in Web Usage

Thumbnail
Voir/Ouvrir
ugal_f1_2011_nr2_6_Dinuca.pdf (431.3Ko)
Date
2011-07
Auteur
Dinuca, Claudia Elena
Metadata
Afficher la notice complète
Résumé
Web servers worldwide generate a vast amount of information on web users’ browsing activities. Several researchers have studied these so‐called clickstream or web access log data to better understand and characterize web users. Clickstream data can be enriched with information about the content of visited pages and the origin (e.g., geographic, organizational) of the requests. The goal of this project is to analyse user behaviour by mining enriched web access log data. With the continued growth and proliferation of ecommerce, Web services, and Web‐based information systems, the volumes of click stream and user data collected by Web‐based organizations in their daily operations has reached astronomical proportions. This information can be exploited in various ways, such as enhancing the effectiveness of websites or developing directed web marketing campaigns. The discovered patterns are usually represented as collections of pages, objects, or resources that are frequently accessed by groups of users with common needs or interests. The focus of this paper is to provide an overview how to use frequent pattern techniques for discovering different types of patterns in a Web log database. In this paper we will focus on finding association as a data mining technique to extract potentially useful knowledge from web usage data. I implemented in Java, using NetBeans IDE, a program for identification of pages’ association from sessions. For exemplification, we used the log files from a commercial web site.
URI
http://10.11.10.50/xmlui/handle/123456789/787
Collections
  • 2011_fascicula1_nr2 [17]

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une session

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV