• română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • English 
    • română
    • English
    • français
    • Deutsch
    • español
    • italiano
  • Login
View Item 
  •   DSpace Home
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula IX
  • 1993 -2018
  • 2015 fascicula9 nr2
  • View Item
  •   DSpace Home
  • Scientific papers - Annals of "Dunarea de Jos" University of Galati - Analele științifice ale Universității "Dunărea de Jos" din Galați
  • Fascicula IX
  • 1993 -2018
  • 2015 fascicula9 nr2
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conductive-Atomic Force Microscopy Investigation of the Electrical Properties of Low Temperature Deposed ZnO Transparent thin Films

Thumbnail
View/Open
ugal_f9_2015_nr2_3Alexa.pdf (1.089Mb)
Date
2015
Author
Alexa, A.
Pimentel, T.
Calmeiro, A.
Istrate, A.
Fortunato, E.
Mușat, V.
Metadata
Show full item record
Abstract
The paper presents the investigation by conductive-atomic force microscopy (C-AFM) of the variation of the local conductivity and topography of the transparent ZnO thin films deposed onto soda lima glass substrates by spin-coating of pre-prepared ZnO nanoparticles. With conductivity measurements at the nanometer level, the chemical and crystalline structure of the thin films obtained at temperature below 200 °C was investigated by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction, respectively, as a function of the number of the deposed layers and conditions of their deposition, such as deposition rate and the temperature of post-deposition annealing. The increase of the thermal treatment temperature, from 120 to 180 °C, leads to increased values of all thin films, most notably for the thickest sample with three layers deposed at 500 rpm that shows the highest decrease of thickness, indicating the highest compaction. The samples with three layers post-treated at 180 oC show grain growth associated with increased roughness.
URI
http://10.11.10.50/xmlui/handle/123456789/5207
Collections
  • 2015 fascicula9 nr2 [16]

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace 6.0 | Copyright © Arthra Institutional Repository
Contact Us | Send Feedback
Theme by 
Atmire NV