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1.INTRODUCTION 
 

This paper discusses a method for steel and 
aluminum strips thickness control providing 
enhanced performance quality. The rapid growth in 
mini mills and small sized flat product plants, 
especially in Asia, has encouraged the growth in 
single stand reversing mills. At the same time there 
are increased demands on improved quality in 
thickness tolerances. Typically a single stand mill has 
a pair of driven work rolls supported between larger 
diameter backup rolls. The strip thickness is reduced 
between 15 and 50 percent each time it passes 
between the work rolls and is subject to high 
compressive forces. In the roll gap region plastic 
deformation occurs and slipping between the strip 
and roll surface takes place. The necessary 
compressive force is applied by hydraulic cylinders. 
Multiple passes may be needed to obtain the desired 
final thickness. Each pass involve rolling a coil from 
the uncoiling mandrel to the coiling mandrel as fast 
as possible and with desired thickness, flatness and 
surface quality. Keeping the strip thickness within a 
tight tolerance band is one of the crucial jobs in cold 
rolling. The more the thickness variation can be 
reduced, the closer the mill can be operated at the 
minimum permissible thickness. 
 
A minimum variance control technique is suitable to 
reduce the thickness deviations from desired value. 
This technique implies to elaborate a prediction 
model for rolling forces deviations. In the following a 

brief description of the cold rolled process and of the 
usual thickness control laws are presented. Finally, a 
polynomial method for prediction of the rolling force 
deviation based on  measured rolling force is 
proposed. 
 
1.1.  A brief introduction to cold rolling process 
 
The main electrical drive equipment of a reversing 
mill is: the rolls drive, the coil and the uncoil drive. 
An essential element for controlling the rolling 
processes is the roll gap adjusting system. Older mills 
have mechanical screw down systems, equipped with 
electrical motors and automatic gap control. The 
modern mills have hydraulic adjusting systems. They 
provide a much faster and more accurate operation 
than a screw down. To control the rolling process the 
following sensors are used: 
• the hydraulic cylinder position; 
• the rolling force load cells or a measurement of the 

cylinder pressure used instead; 
• strip speed sensors with laser Doppler or with 

special measurement wheels 
• thickness sensors which offer the entry and the 

resulting exit thickness 
• strip accurate tension sensor is expensive, so the 

most common method is to compute the tension 
from the motor armature current, the actual coil 
diameter and the strip cross-section area. 

The incoming strip has two mainly disturbances: 
thickness variations and hardness variations. Due to 
the rolling forces in the rolling process the stand gap 
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will increase and the outgoing strip will have a 
thickness deviation from the desired value. 
 
The main method consists in the roll hydraulic 
adjustment system. Another additional method is the 
control of tension applied to the incoming and 
outgoing strips. The rolling speed and the torque of 
the main rolls drive system have also an influence. 
There are different solutions for thickness control 
systems. In the modern rolling mills the thickness 
control is accomplished by the system called 
Automatic Gauge Control (AGC) based on roll gap 
control, strip tension control and mill speed control. 
Since the entry thickness deviations give information 
about the strip, before it passes the rolling cylinders 
(the thickness sensor being before the stand) the 
AGC system applies the thickness compensation in a 
feed forward manner. 
 
In this paper we handle with thickness control 
technique named BIRSA [4] system based on rolling 
force deviations. During the rolling process a 
correction signal is calculated from measured and 
predicted rolling force to compensate the thickness 
deviations. The rolling force prediction stand for a 
feed forward control. Considering the stand as a 
spring, the changes in strip thickness ∆h, rolling mill 
cylinders ∆S and rolling force ∆F, fulfill Hook’s law: 

F
M

Sh ∆+∆=∆
1                 (1) 

 
where M is the stand elasticity modulus. The control 
law for  ∆h null, is:  

M
FS ∆

−=∆                        (2) 

 
 the predicted force model feed forward the roll force 
pattern red from force sensors and dictates the exact 
time of control output allowing proper compensation  
 for  the response time of the hydraulic servo system 
which execute the correction ∆S* 
 

 
Fig. 1. BIRSA model for force deviations 

compensation. 
 

In fig. 1 ∆S represents the disturbances due to the 
stand elasticity. These disturbances are compensate 
by ∆S*W-1(s) command.  
 
II..PREDICTIVE MODEL FOR ROLLING FORCE 
 
The signals that characterize the rolling process like 
thickness deviations ∆H and ∆h, force and torque 
deviations ∆F and ∆C are random variables. The 
natural quantity to study in a random or stochastic 
process is the power spectrum (the Fourier transform 
of the autocorrelation function of the signal) and not 
the harmonic spectrum (i.e. the Fourier transform of 
the signal). The thickness deviations ∆H and ∆h are 
obtained directly from the thickness transducer 
because H* and h* are the desired constant thickness 
and 

 
 H* - H   H =∆                       (3) 

and   
 h* - hh =∆                            (4) 

 
The force F and torque C are the absolute 
measurements. The mean values of F and C are 
variable. It is a natural way to consider the moving 
average of the signal s(t) 

 

tt,s(τ(τ)(t)s
t

t
≤∆+

∆
= ∫

∆−

−
0

1            (5) 

 
The signal deviation or noise ∆s are 

 
∆s = s(t) - ∆s(t)                           (6) 

 
As a measure of the amplitude of the signal s(t)  we  
use the moving root mean square (RMS) average. 

 

tt,d(τs(t)s
t

t
≤∆+

∆
= ∫

∆−

τ)1 22      (7) 

 
The moving average and moving RMS calculation 
are always performed a specified time constant 
(averaging time, or window width) represented by a 
certain number N, of data points. The calculation is 
strongly affected by the value you choose for the 
window width. The window width is fixe or variable 
(moving window). An important difference in RMS 
and noise calculation is that the RMS calculation 
releates to the power content of the total signal 
(including the mean), while the noise calculation 
ignore the mean and are derived only from varying 
components of the signal. 
 
In the rolling process standard deviation of sheet 
thickness is the most important quality criteria. Is a 
natural way to adopt the minimum variance thickness 
control technique to accomplish that criteria. 
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Minimum variance control implies a prediction 
model.  
 
In the case of thickness control with the BIRSA 
algorithm the control is based on force predictive 
model. The force signal  

    
 )()( tFtFF −=∆                       (8) 

 
where )(tF  is the moving average of )(tF directly 
determine the thickness deviations )(tH∆ . 

The prediction of 
∧

∆F with λ sample periods is 
allows the compensation of lag time introduced by 
hydraulic system which compensate the thickness 
deviations. First of all the autocorrelation function 

)(τfR of F∆ signal must by calculated. The model  

H(z) of force prediction yield the relation: 
 

ef RzHzHzR )()()( 1−=                 (9) 

 
where  Re is the autocorrelation function of white 
noise. The prediction force model is based on 
predetermined force autocorrelation function Rf and 
the actual ∆F measurements. 
 
Let ∆F(t)  be a stationary process with zero mean 
value and autocorrelation function: 

 

)(
)()(

zB
zAzR f =                           (10) 

 
Rf is a causal function given as ratio of polynomials A 
and B. We must find the filter H which approximate  
the non causal prediction function: 
 

...3,2,1, ==Λ − λλz   (11) 
 
That means the filter H has to predict the force 
deviation ∆F with λ samples periods.  
 
The prediction algorithm is the following: 
1. Let the polynomials A, B be partitioned as 

product of stable/unstable terms: 
 

A = A+A-                             (12) 
 

B = B+B-                           (13) 
 

R = R+R-                           (14) 
 
Where  for example A+ is a strictly stable polynomial. 
2. From polynomial equation 

++ =Π+ ABZ θλ                   (15) 
 

we  find the minimal degree solutions Π and θ. 
 

3. The optimal filter is: 

+
=

A
H θ                                        (16) 

 
The prediction error, E, is the difference between the 
filter desired responses: 
 

FFd ∆⋅Λ=∆                    (17) 
 

where ∆F is the force measured signal, and the filter 
output: 

FHF ∆⋅=∆
∧

                   (18)                             
That is: 
 

FHE ∆−Ω= )(  (19) 
 

The error autocorrelation function is: 
 

fe RHHR )ˆˆ)(( −Ω−Ω=     (20) 

 
The least square error is: 

∑
∞

=
=

0

2

i
ieJ                                             (21) 

We have: 
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By Cauchy integral formula: 
 

∫
Γ

−

⎩
⎨
⎧

≠
=

=
hiif
hiif

z
dzz hi

0
1          (25) 

 
finally we have: 

∑ ∑ ∑
∞

=

∞

=
=

0 0

2

i h
ihi eee   (26) 

 
and the least square criteria (21) is: 
 

∫
Γ

==
z

dzzR
j

EctEJ e )(
2
1ˆ
π

       (27) 

 
The minimum variance error condition is: 
 

∫
Γ

=∆=∆ 0
2
1

z
dzR

j
J eπ

 (28) 

 
From (21) we have: 
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 HRHHRHR fff ∆Ω−+∆Ω−=∆ )ˆˆ(ˆ)(  (29) 

 
From (28,29)  results: 
 

I1+ I2=0                          (32.a) 
where  

 0ˆ)(1 =∆Ω−= ∫
Γ

z
dzHRHI f              (32.b) 

 
With the substitution w=z-1 the I2 integral is the same 
as I1. Then we obtain: 
 

z
dzH

Bz
AzRI f∫

Γ
+

+
− ∆

−
= ˆ1 λ

λθ         (33) 

 
With the condition (17) we have: 
 

z
dzH

z
RI f∫

Γ

− ∆−= ˆ1 λ
π            (34) 

 
That integral is always zero if the contour of 
integration Г is located in D+ domain and not 
inclosed the poles. 
  

III AN EXAMPLE 
  
We consider stochastic stationary process with zero 
means and autocorrelation function  : 

 

)2,06,0)(2,06,01(
)15,1)(25,11(4

22 +−+−

++
=

zzzz
zzzR       (35) 

 
We must calculate the filter H which predict the 
measured signal with λ=2 samples period. First we 
find the minimal degree solution of polynomial 
equation (17) with respect to polynomials θ and Π. 
 

)25,1(2)2,06,01( 22 +=+−+ zzzz πθ         (36) 
  
Minimal degrees of polynomials θ and Π are |θ| =1, 
|Π|=1 and we have: 
 

Π0=2,5    (37) 
 

-0,6 Π0+ Π1=2   (38) 
 

θ0+0,2 Π0-0,6 Π1=0   (39) 
 

θ1+0,2 Π1=0   (40) 
 

The minimal solution is: 
θ=1,6-0,7z   (41) 

 
Π=2,5+3,5z   (42) 

 
The optimal filter results from (18): 
 

z
zH

8,01
28,064,0

+
−

=                      (43) 

That is: 
11 28,064,0ˆ8,0ˆ −− −+−= iiii xxyy     (44) 

 
The error variance is: 

5,18ˆ 2
1

2
0 =+== ππππctJ           (45) 

In fig 2 are represented the filter predicted signal, ŷ , 
and the measured signal x.  
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Fig. 2 The filter predicted signal in conditions of 

example 1. 
 

The key point for the optimal filter calculation is the 
autocorrelation function. Practically this function is 
calculated in discrete form by experimental data: 

∑
−=

==
n

ni

i
i

z
czRR 2

                   (46) 

Where c is a symmetrical polynomial of  2n degree: 
 

c = Rn + Rn-1z +…+ R0zn + R1zn+1 +…+Rnzn   (47) 
 
We assume that c polynomial has not zeros in the 
contour Г: |z|=0. Let be the general representation of 
the autocorrelation function by 
 

++ === BBAA
zBzB
zAzAzR ,,
)(ˆ)(
)(ˆ)()(         (48) 

The polynomial relation (17) is: 
  zθ+Bπ=A                         (49) 

We represent the polynomials A and B as: 

∏
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And we obtain the generalized form of filter as: 
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IV. EXPERIMENTAL RESULTS 
 
The force prediction model with several sampling 
periods is based on the autocorrelation function of 
force ∆F deviations from moving average values. 
 
Because multiple passes are needed to obtain the 
desired final thickness the force deviations 
autocorrelation function is calculate from data 
measured at first rolling pass. If in the first pass no 
correction on rolling mill cylinders are applied 
(∆S*=0) , from relation (1) results 
 

F
M

h ∆=∆
1                           (52) 

 
In that case the autocorrelation functions for 
thickness deviations ∆h and force deviations ∆F are 
the same taken in account the scaling factor M. That 
fact is very important because on can use for 
calculation of the autocorrelation function ∆h or ∆F 
signals. 
 
In fig. 3 are represented then measured data  ∆h at 
first rolling pass with compressed time axis  (fig. 3a) 

and with zoomed time axis (fig, 3b). Using 36,900 
measurements the correlation function R(ح ) – fig 3c 
and power density spectrum S(f) – fig 3d was 
calculated.  
 
In fig. 4 the same calculations was developed using 
the measurements at the autocorrelation function 
taken from second rolling pass.  The natural 
quantities to study in a random or stochastic process 
is the autocorrelation function and the power 
spectrum S(f) i.e. the Fourier transform of the 
autocorrelation function and not the harmonic 
spectrum( i.e. the Fourier transform of the signal). 
 
The thickness  ∆h or force  ∆F deviations has  non – 
harmonic and harmonic components. The harmonic 
part is deterministic and referred to a discreet 
spectrum and is characterised by the locations f1, f2, 
in the power spectrum. For example in the power 
spectrum calculated from measured data at the 
second rolling pass (fig. 2b) the impulsive component 
with f=3 Hz correspond to a deterministic deviation 
due to the rolling cylinders exentricity.  
 
 

 
Fig. 3 The autocorrelation function and power spectrum calculates from ∆h measurements at first rolling pass. 
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 Fig.4 The autocorrelation function and power spectrum calculates from ∆h measurements at  second rolling 
pass 
.
In Figure 5 are presented experimental results 
obtained in Galfinband and Technosteel Iasi rolling 
mills thickness control system.  It can be seen the 
influence of the feed-forward control over the  ∆h. 
The following technologies have been used for 
implementing the control system: 
• Allen-Bradley Control Logix Programmable 

Controller 

• Allen-Bradleu operator displays 
• Relliance Electric DC Drives 
• ControlNet industrial network 
 
Figure 6 presents the architecture of the control 
system used at Technosteel  Iasi rolling mill. 
 

 

 
Fig. 5 ∆h measurements with and without feed-forward control. 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2007  ISSN 1221-454X  

 

 
120 

 
Fig. 6  Architecture of the control system - Technosteel Iasi  rolling mill. 

 
V.CONCLUSIONS 

 
The thickness deviations  from desired values has 
statistic and harmonic components. The harmonic 
components are deterministic and d’ not make object 
of this paper. A predictive model is developed for 
statistical rolling force deviations based on 
autocorrelation function calculated from measured 
data. If the thickness control system is off line ( no 
thickness correction are applied) the autocorrelation 
functions of force deviations and thickness 
deviations are the same taking into account a scaling 
factor. The thickness deviations compensation is 
accomplish in a feed forward manner using measured 
thickness deviations or predicted rolling force 
deviations. In this paper a rolling force predictive 
model is developed for feed forward control of strip 
thickness. The experimental results obtained in 
Galfinband and Technosteel Iasi rolling mills 
thickness control system are presented.   
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