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Abstract: The segmentation of signals is an important process in change detection 

applications. Many results reported in the literature use information and entropy, as 

direct or indirect processed variables. The objective of the paper is to make a short 

review of the similarities between Shannon and Renyi entropies, and the ways of using 

them in change detection problem. This paper is on signal description and analysis from 

information point of view, and it can be viewed as a practical short overview. 

Keywords: Change detection, Signal processing, Entropy, Information processing.  

1. INTRODUCTION 

The general problem of change detection and 

isolation, as well the definition of the problems, 

algorithms and solutions, are well presented in a 

number of solid publication as (Basseville and 

Benveniste, 1989; Basseville and Nikiforov, 1993; 

Basseville,1988), of (Gustafsson, 2000) and (Poor, 

and Hadjiliadis, 2008). The basic field of application 

is in incipient fault detection and process diagnosis, 

as presented in (Isermann, 2005; Jardine, et al, 2006; 

Peng and  Chu, 2004) or (Venkatsasubramanian, et 

al, 2003). Automatic segmentation of signals is also 

an important process in change detection 

applications. As examples, we might have seismic 

signals segmentation or images (edge and object new 

detection), ecosystems, structures of complex 

processes, etc. 

Two basic methods could be considered for change 

detection: (1) statistical methods, which use 

estimation of the main moments up to order four (see 

(Markou and Singh, 2003); (2) time-frequency 

transforms (Chen and Ling, 2002; Daubechies,  

1990) or (Grochenig, 2001). It seems that the second 

type of method, based on time-frequency analysis, is 

more powerful, even it is more complex and time 

consuming. One of the key aspects in the success of 

these methods is to change the space of 

measurements, in the sense of transforming. Instead 

of analyzing the instantaneous values of the raw 

signal, an auxiliary signal is considered, with 

behavior more flexible, i.e. more illustrative 

concerning the moments of changes. One of such 

transform is based on Renyi entropy. 

The objective of the paper is to make a review of the 

similarities between Shannon and Renyi entropies, 

and the ways of using them in change detection 

problem. This paper is on signal description and 

analysis from information point of view, and it can 

be viewed as a practical and short overview. The 

structure of the paper has three main sections. The 

first one considers the analysis of Shannon and Renyi 

entropies. The next section, section 3, introduces the 

basic properties of the considered entropies. Section 

4 considers the entropy estimation problem. The last 

section investigates a short case study related to 

change detection in seismic signals. 

2. SHANNON AND RENYI ENTROPIES 

2.1 Discrete case 

Discrete case considers a finite set of independent 

events with associated probabilities under a statistical 

distribution as 
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In communication systems, at least, the entropy, as 

quantitavely measure of information, has been 

considered mainly by Shannon, which has continued 

the ideas of Hartley and Nyquist.  There is a set of 

three basic papers, (Hartley, 1928; Nyquist, 2002), 

and (Shannon, 1948) well knew and accepted as the 

basic set in information measuring and modelling. 

Shannon entropy H(P) is defined as the mean of the 

discrete random variable, called information, )P(i j
, 

obtained after or prior of an probabilistic event by  
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where k is a positive constant depending on the unit 

of measure of information; k=1 for [bit / symbol]. 

This is called Shannon entropy (discrete case). The 

logarithmic measure of entropy is indicated by a set 

of three reasons (Shannon), being usefulness, 

intuitiveness and mathematically convenience 

(suitableness). It is the main expression used in the 

information and coding theory. Equation (3), for the 

Shannon entropy, uses linear average. By considering 

of the general theory of means, for any function g(x) 

with inverse g
-1

, the mean can be computed as, 

(Principe, 2010a; 2010b): 
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Applying this definition to H(P) we get 
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By imposing independent events, we get two possible 

solutions for g(x): 
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The first one gives Shannon entropy and the second 
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which means a parametric family of information 

measures that are called Renyi’s entropies. The 

Renyi entropies tend to Shannon entropy as 1 . 

Fig.1 shows the behaviour of the two information 

measures. The Renyi’s entropies contain Shannon as 

a special case, (Bromiley, et al, 2004). 

 

 
Fig. 1. Evolution of the entropies with alpha  

An important feature of Shannon’s entropy is that, 

for a fixed variance, it is maximized for Gaussian 

distributions (see properties of the Shannon entropy). 

By simulation, the Renyi entropy is maximized as 

well by the Gaussian pdf as it is was presented in Fig. 

2, right side. It is useful to know the behaviour 

around Gaussian distribution, i.e. distributions which 

are sub-Gaussian or super-Gaussian. The expression 

of the generalized Gaussian pdf (GGpdf) is, 

(Domínguez-Molina, et al, 2003),:    
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where  > 2 refers to the super-Gaussian region and 

 < 2 refers to the sub-Gaussian region. Parameters B 

and C are function of   that ensure the pdf integrates 

to 1 and that yield a pdf corresponding to a unit-

variance random variable. The values of  = 1, 2, and 

infinite, correspond to Laplacian, Gaussian and 

uniform pdfs, respectively. Fig. 2, right side, shows 
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the GGpdf for various values of parameter   , values 

of 0.5, 1, and 2. 

 

 
Fig. 2. Evolution of Renyi entropy ( 1 ) with 

various pdfs and GGpdfs 

The values of Renyi’s quadratic entropy and 

Shannon’s Entropy for a uniform random variable are 

identical (this is true for all  > 0). For the 

Generalized Gaussian family, Shannon’s entropy is 

maximized for =2, as expected, and Renyi’s entropy 

is maximized of  equal to 4, (Hild, et al, 2006). 

2.2. Continuous case 

It is often necessary to define and use the entropy of 

a continuous ensemble, X, described by the 

probability density function (pdf),  p(x). The Shannon 

entropy of X is defined by, (Gallager, 1968): 
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Similar expressions could be developed for other 

common entropies as H(Y/X) and I(X,Y). The last one 

is the average mutual information between X and Y. 

These entropies are not necessarily positive, not 

necessarily finite, not invariant to transformations of 

the outcomes, and thus not interpretable as average of 

information, (Gallager, 1968). The absolute values 

are meaningless. Therefore, they can generally only 

be used in comparative or differential processes, 

(Bromiley, et al, 2004). In the continuous case, the 

Renyi’s entropy of order α is defined as: 
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When =2, Renyi’s entropy )Y(H R2
 is also called 

quadratic entropy.  

3. PROPERTIES OF THE ENTROPIES 

3.1. Properties of the Shannon entropy 

PS1 (positivity): The entropy is a positive function  
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PS2 (continuity): The entropy is a continuous 

function with reference to each discrete variable 

defined on (0,1], being the sum of some elementary 

continuing functions (logarithms). The continuity 

property shows that a small variation in the 

distribution probability Pj of the events implies small 

variation in the information measure (entropy). So, if 

jP  is small then )P(H j is also small.  

PS3 (symmetry): The entropy is a symmetric function 

of variables Pj : 
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The change of the order in the list of probabilities 

does not change the value of the entropy. 

PS4 (additivity): The entropy of the reunion of some 

independent events Sj is the sum of the entropies of 

the considered events.  
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PS5 (superior margin): The maximum value of the 

entropy is reached when the events have the same 

probabilities:  

Nlog)S(H  , iff i,N/Pi 1        (18) 
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3.2. Properties of the Renyi’s entropy, (Principe, 

2010b)  

The expression (8) is considered as reference. 

PR1: )(XH  is nonnegative: 0)( XH          (19) 

PR2: )X(H  is symmetric: ),(H),(H 0110    (20) 

PR3: )(XH  is concave for 1 . For 1  is not 

pure convex nor pure concave; It loses concavity for 

1*  , where *  depends on N , as  

)Nln(/)ln(* 141             (21) 

PR4: )()1( XH   is a concave function of X. 

Fig. 3 shows the shape of the Renyi entropy for 

various values of alfa parameter. 

PR5: )(XH  is bounded, continuous and not 

increasing function of  . (see Fig. 3)  

 

 
Fig. 3. Renyi entropy vs alfa 

PR6: )(XH  is a monotonic function of the 

information. Indeed, if we consider two experiments 

with the number of events N and, respectively, N+1, 

the Renyi entropy of the new one is grater than the 

old one. 
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3.3. Properties of Renyi’s entropy with reference to 

Shannon entropy 

P1: If 1 then the Renyi’s entropy is equal with 

the Shannon’s entropy:   )()(1 PHPH SR          (23) 

This can be observed by simulation, e.g. as it is 

presented in Fig. 1, or by observing that, (Bromiley, 

2004): 
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P2: If the events have the same probabilities, i.e. 

Pj=1/N, j=1,2,…,N , then the two entropies are equal: 
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P3. A bound for Shannon’s entropy is, (Nyquist, 

2002): 
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4. ENTROPY ESTIMATION 

There is a motivation to use Renyi’s entropy, which 

is related to the computation. As relation (1) and (3) 

show, the computation of the entropies needs the 

availability of the exact or estimated pdf. (The 

probabilities’ set in discrete case and pdf in the 

continuous case). The real examples provide 
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information in terms of data samples 1mxRa , as 

observations of a random vector 1mx
m RY  . If we 

consider sets with N observation vectors, ia , the 

problem of computation of entropies become thus 

mandatory. The pdf is estimated using a Parzen 

window (Parzen, 1962) with Gaussian kernel 
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2  is the variance, and mxmRI is the identity 

matrix. The Renyi entropy estimator is, (Erdogmus, 

et al, 2002) for 10   , : 
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It is observable that Eq. 8 is not valid for 1 . By 

using the idea of (Hild, et al, 2006), which starts by 

writing the Shannon entropy in terms of an 

expectation: 

     )Y(PlogE)Y(iEYH mmm 1      (31) 

the expectation is replaced by the sample mean and 

using Parzen window estimation of pdf, the 

following estimator for Shannon entropy is obtained, 

(Hild, et al, 2006): 
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When Shannon’s entropy definition is used along 

with this pdf estimation, the estimation becomes very 

complex. The second order Renyi entropy could be 

estimated more efficiently (O(N) instead of O(N
2
)) 

by, (Hild, et al, 2006): 
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where the difference in time between the outputs, q, 

is user defined (the recommended value is q=1). 

Good approximation can be guaranteed if either one 

of the following two conditions is met, (Hild, et al, 

2006): (1)  Multiple entropy estimates are averaged, 

where the (time) indices of the data are uniformly 

randomized for each estimate; (2) The data is i.i.d. 

(independent and identically distributed) and N is 

sufficiently large, e.g. N>1000 requires only a single 

estimate. The entropy estimators require the selection 

of the kernel size,  . This should be small small 

(relative to the standard deviation of the data). Values 

between 0.1 and 2 for unit-variance signals, are good 

choices, (Hild, et al, 2006). 

5. APPLICATION IN SIGNAL SEGMENTATION 

A synthetic signal is considered. It is composed of 

seven multicomponent epochs (Ne=7) with the 

duration of 6 seconds, excepting the last epoch of 5 

seconds. The sampling frequency is Fs = 100 Hz. 

The parameter values of the signals are presented by 

Eq. 37. The free-noise signal is built by 
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A Gaussian noise signal is added to the previous one: 
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with zero mean and variance of 0.1. This signal 

might be a prototype signal for seismic signal class, 

where detection of the changes is quite important. 
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The resulted signal is presented in Fig. 4, upper side. 

The vertical lines show the limits of the epoch, i.e. 

the moments when changes occur. The next two 

subfigures show the evolution of the Renyi entropies, 

first and second orders. From the evolution of the 

entropies, and compared with the raw signal, it is 

clear that the change moments will be much easier 

detected, with ordinary methods based on statistical 

signal processing, e.g. mean and variance 

estimations. In the computation of the entropies, a 

moving (Hanning) weighted window of length 32 

was used. 
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Fig.4. Raw signal, the 1
st
 & 2

nd
 order Renyi entropies 

6. CONCLUSION 

The Renyi entropíes are important measures of 

information. The measures are scale-dependent when 

applied to continuous distributions, so their absolute 

values are meaningless. Therefore, they can generally 

only be used in comparative or differentiable 

processes. The Shannon’s entropy can be viewed as 

one member of Renyi’s entropy family. Renyi’s 

entropy is more general and includes the Shannon’s 

entropy as a special case. Estimation of Renyi’s 

quadratic entropy form a finite data set is much easier 

than in Shannon’s entropy case. The information 

content and the complexity of a probability density 

function can be measured by the entropy function. 

One of the key reasons to do this study was to 

prepare the next work, which is related to the use of 

Renyi entropy to measure the complexity and the 

information content of non-stationary 

multicomponent signals based on time-frequency 

transforms. 
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